<div style="font-family: Arial, sans-serif; font-size: 14px;"></div><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; background-color: rgb(255, 255, 255);"><span style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre-wrap">Dear Colleague,</span></p><h3 dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; padding: 12pt 0pt 17pt; background-color: rgb(255, 255, 255);"><span style="font-size:14pt;font-family:Calibri, sans-serif;font-weight:700;text-decoration:none;white-space:pre-wrap">The OptLearnMAS workshop at AAMAS 2024 is accepting submissions!</span></h3><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; background-color: rgb(255, 255, 255);"><span style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre-wrap">The goal of the workshop is to provide researchers with a venue to discuss models or techniques for tackling a variety of multi-agent optimization problems. We seek contributions in the general area of multi-agent optimization, including distributed optimization, coalition formation, optimization under uncertainty, winner determination algorithms in auctions and procurements, and algorithms to compute Nash and other equilibria in games. Of particular emphasis are contributions at the intersection of optimization and learning. See below for a (non-exhaustive) list of topics.</span></p><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; background-color: rgb(255, 255, 255);"><span style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre-wrap">This workshop invites works from different strands of the multi-agent systems community that pertain to the design of algorithms, models, and techniques to deal with multi-agent optimization and learning problems or problems that can be effectively solved by adopting a multi-agent framework.</span></p><h3 dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; padding: 0pt 0pt 5pt; background-color: rgb(255, 255, 255);"><span style="font-size:14pt;font-family:Calibri, sans-serif;font-weight:700;text-decoration:none;white-space:pre-wrap">Topics</span></h3><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; background-color: rgb(255, 255, 255);"><span style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre-wrap">The workshop organizers invite paper submissions on the following (and related) topics:</span></p><ul style="padding-left: 2.85714em; margin-top: 0px; margin-bottom: 0px; padding-inline-start: 48px; background-color: rgb(255, 255, 255);"><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="text-decoration:none;white-space:pre-wrap">Optimization for learning (strategic and non-strategic) agents</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="text-decoration:none;white-space:pre-wrap">Learning for multi-agent optimization problems</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="text-decoration:none;white-space:pre-wrap">Distributed constraint satisfaction and optimization</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="text-decoration:none;white-space:pre-wrap">Winner determination algorithms in auctions and procurements</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="text-decoration:none;white-space:pre-wrap">Coalition or group formation algorithms</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="text-decoration:none;white-space:pre-wrap">Algorithms to compute Nash and other equilibria in games</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="text-decoration:none;white-space:pre-wrap">Optimization under uncertainty</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="text-decoration:none;white-space:pre-wrap">Optimization with incomplete or dynamic input data</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="text-decoration:none;white-space:pre-wrap">Algorithms for real-time applications</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="text-decoration:none;white-space:pre-wrap">Cloud, distributed and grid computing</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="text-decoration:none;white-space:pre-wrap">Applications of learning and optimization in societally beneficial domains</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="text-decoration:none;white-space:pre-wrap">Multi-agent planning</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="text-decoration:none;white-space:pre-wrap">Multi-robot coordination</span></p></li></ul><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; background-color: rgb(255, 255, 255);"><span style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre-wrap">The workshop is of interest both to researchers investigating applications of multi-agent systems to optimization problems in large, complex domains, as well as to those examining optimization and learning problems that arise in systems comprised of many autonomous agents. In so doing, this workshop aims to provide a forum for researchers to discuss common issues that arise in solving optimization and learning problems in different areas, to introduce new application domains for multi-agent optimization techniques, and to elaborate common benchmarks to test solutions.</span></p><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; background-color: rgb(255, 255, 255);"><span style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre-wrap">Finally, the workshop will welcome papers that describe the release of benchmarks and data sets that can be used by the community to solve fundamental problems of interest, including in machine learning and optimization for health systems and urban networks, to mention but a few examples.</span></p><h3 dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; padding: 12pt 0pt 17pt; background-color: rgb(255, 255, 255);"><span style="font-size:14pt;font-family:Calibri, sans-serif;font-weight:700;text-decoration:none;white-space:pre-wrap">Visit the website:</span></h3><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; background-color: rgb(255, 255, 255);"><span style="font-size: 12pt; font-family: Calibri, sans-serif; text-decoration: underline; text-decoration-skip-ink: none; white-space: pre-wrap; color: rgb(0, 0, 255);"><a href="https://optlearnmas.github.io/" rel="noreferrer nofollow noopener" target="_blank" style="color: blue;">https://optlearnmas.github.io/</a></span></p><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; background-color: rgb(255, 255, 255);"><span style="font-size: 12pt; font-family: Calibri, sans-serif; text-decoration: underline; text-decoration-skip-ink: none; white-space: pre-wrap; color: rgb(0, 0, 255);"><br></span></p><h3 dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 5pt; background-color: rgb(255, 255, 255);"><span style="font-size:14pt;font-family:Calibri, sans-serif;font-weight:700;text-decoration:none;white-space:pre-wrap">Important Dates</span></h3><ul style="padding-left: 2.85714em; margin-top: 0px; margin-bottom: 0px; padding-inline-start: 48px; background-color: rgb(255, 255, 255);"><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; background-color: rgb(255, 255, 255);"><span style="text-decoration:none;white-space:pre-wrap">Feb 5, 2024 (23:59 UTC-12) – Submission Deadline</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; background-color: rgb(255, 255, 255);"><span style="text-decoration:none;white-space:pre-wrap">Mar 4, 2024 (23:59 UTC-12) – Acceptance notification</span></p></li><li dir="ltr" style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre"><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 22pt; background-color: rgb(255, 255, 255);"><span style="text-decoration:none;white-space:pre-wrap">May 6-7, 2024 – Workshop Date</span></p></li></ul><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; background-color: rgb(255, 255, 255);"><span style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre-wrap">Cheers,</span></p><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; background-color: rgb(255, 255, 255);"><span style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre-wrap">Filippo Bistaffa, Hau Chan, Jiaoyang Li, and Xinrun Wang </span></p><p dir="ltr" style="line-height: 1.38; margin-top: 0pt; margin-bottom: 0pt; background-color: rgb(255, 255, 255);"><span style="font-size:12pt;font-family:Calibri, sans-serif;text-decoration:none;white-space:pre-wrap">OptLearnMAS-24 Co-Chairs </span></p><div class="protonmail_signature_block" style="font-family: Arial, sans-serif; font-size: 14px;"><div class="protonmail_signature_block-proton">
</div>
</div>